

Numerical simulations: Coupling between microstructure and component properties

Etienne Bonnaud etienne.bonnaud@swerim.se

- Generalities - numerical simulations

SWERI/

- Classical welding simulations
- Multiphysics welding simulations
- Future work
- Conclusion

Numerical simulations

Numerical simulations

Preprocessing

- geometry
- material properties
- discretization in space / time
- boundary / initial conditions
- loads

Linear / non-linear solution scheme

- evaluation of system energy and minimization
- known state at a given time, at given points
- increment in time / load
 - explicit solver (many small steps, simpler)
 - implicit solver (advanced, always stable)
- new known state

Postprocessing

- field plots
- text files and curves

Welding simulations

Trial-and-error always possible

- cross-sections
- measurements

Advantages

- access to data during welding transient simulations
- access to data difficult to measure residual stresses
- sensitivity analyses deformations

Classical welding simulation

- thermal analysis
- mechanical analysis

Welding simulations – thermal

Welding simulations – thermal

Calibration

Welding simulations - mechanical

Welding simulations

Trial-and-error always possible

- cross-sections
- measurements

Advantages

- access to data during welding transient simulations
- access to data difficult to measure residual stresses
- sensitivity analyses deformations

Classical welding simulation

- thermal analysis
- mechanical analysis

Neutron diffraction and x-ray diffraction

Distance between atom plans Strains Stresses

Contour Method

SWERIM

Deep hole drilling

-Front & back bush--Front & back bush— Gundrill Airprobe -Front & back bush--Front & back bush-Airprobe Electrode

SWERIM

Application: stress corrosion cracking

SWERIM

Buttering 56 beads

Weld 44 beads

Application: stress corrosion cracking

Mutual confirmation Inspection intervals

Welding simulations

Trial-and-error always possible

- cross-sections
- measurements

Advantages

- access to data during welding transient simulations
- access to data difficult to measure residual stresses
- sensitivity analyses deformations

Classical welding simulation

- thermal analysis
- mechanical analysis

Sensitivity studies

T-Joint

- weld on one side only
- a = 5 mm

Dimensions

- length: 1000 mm, width: 300 mm, height: 150 mm

- plate thickness: 10 mm

Boundary conditions

- 2 lines at the long edges
- locked in the vertical direction

Heat source

- from one side to the other

- line energy 1.4 kJ/mm

SWERI/M

Alternatives

Alternative 1 Base case

Alternative 2 Half the line effect: 1.4 kJ/mm \rightarrow 0.7 kJ/mm

<u>Alternative 3</u> Split weld sequence: 1 line \rightarrow 2 half lines

<u>Alternative 4</u> Half the line effect (alt. 2) Split weld sequence (alt. 3)

<u>Alternative 5</u> Totally unconstrained geometry

<u>Alternative 6</u> Totally constrained geometry

Results: displacement magnitude

- Generalities
- Classical welding simulations
- Multiphysics welding simulations

- Future work
- Conclusion

Multiphysics simulations

- Finite Element (FEM) - thermal → Finite Element (FEM) - mechanical

- Finite Element (FEM) - thermal → Phase Field (PF) → Crystal Plasticity (CP)

1) Thermal FEM simulation

1) Thermal FEM simulation

2) Phase Field (PF) simulations

SWERI/M

3) Crystal Plasticity (CP) simulations

- Generalities - numerical simulations

SWERIM

- Classical welding simulations
- Multiphysics welding simulations
- Future work
- Conclusion

Electron Back Scattered Diffraction (EBSD)

Phase Field simulations for ferritic solidification

SWERIM Computational Fluid Dynamics (CFD) simulations

SWERIM Computational Fluid Dynamics (CFD) simulations

Time: 0.013

Conclusion

- Possibilities are numerous.
- Trend: coupling
 - of different software packages
 - at different length scale
 - with different physics
- Necessary
 - reliable temperature dependent material properties
 - calibration of heat source
- Non-trivial simulations require a lot of background preparation.

SL

