Wire arc additive manufacturing (WAAM) with a focus on tubular wires

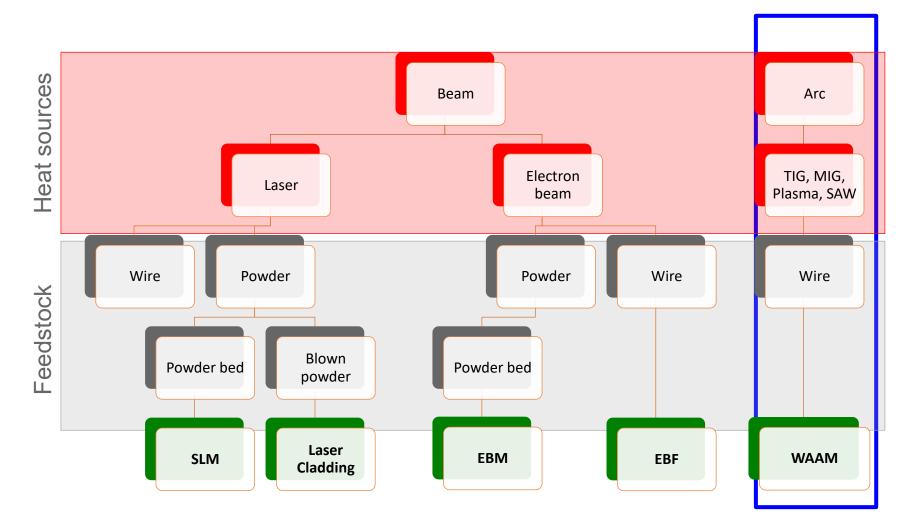
Ebrahim Harati

R&D manager, ITW Welding AB, Partille, Sweden

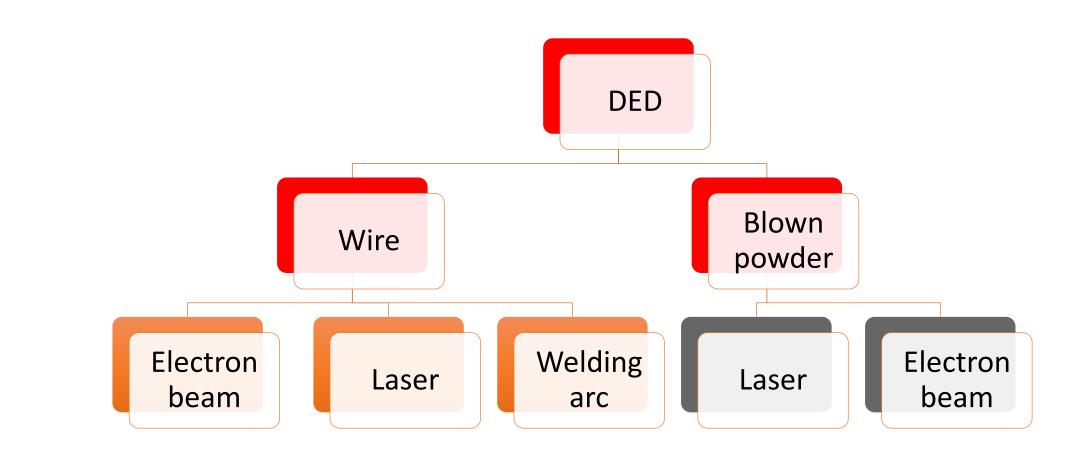
March 2023

HOBART De Tregaskiss (RMT) *BERNARD

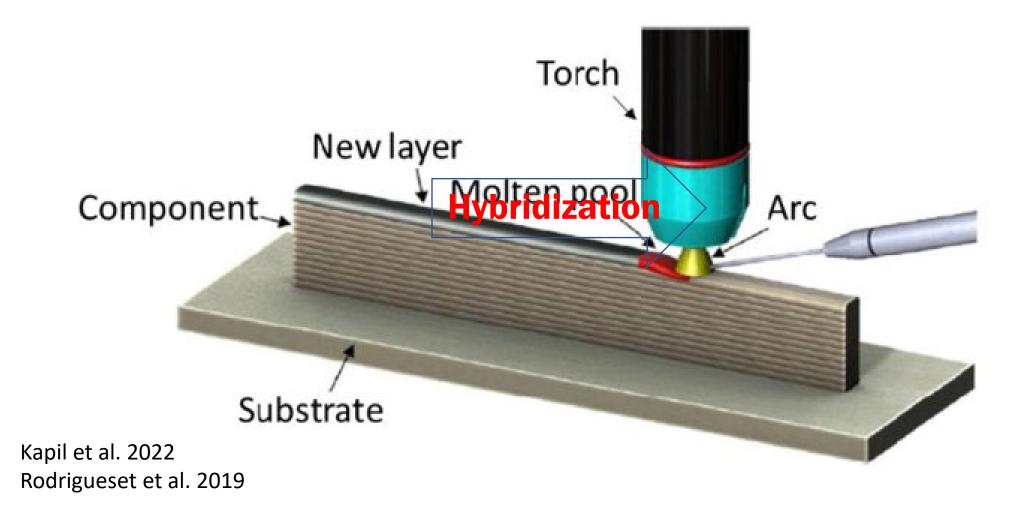
Global solutions. Solid performance.


Agenda

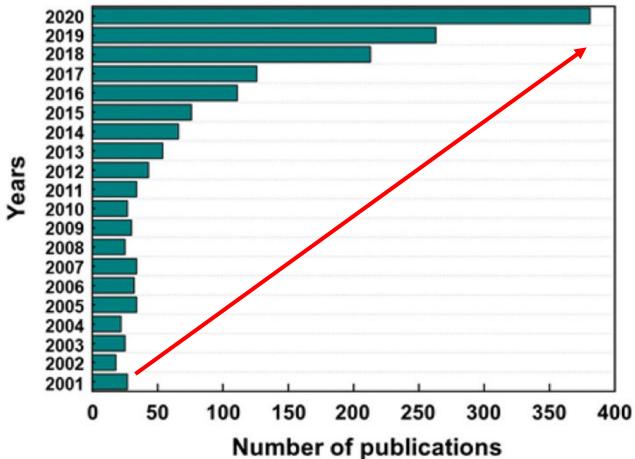
- AM processes
- WAAM
- Wire vs powder
- Wire types and manufacturing
- Design of wires for AM
- AWS D20.1 and AIA recommended guidance
- Summary



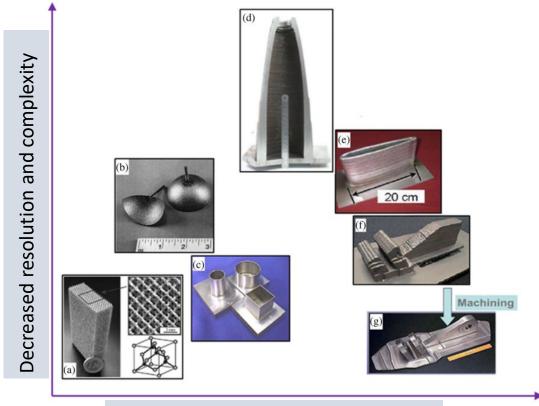
Additive Manufacturing Processes



Direct Energy Deposition

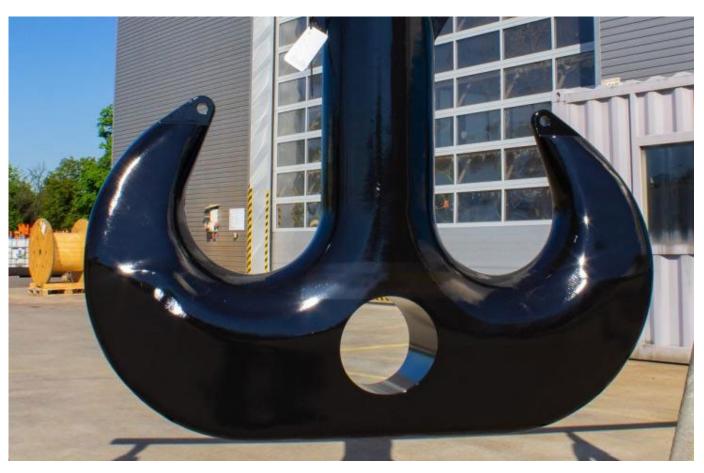

Wire Arc Additive Manufacturing

Research on WAAM+Ti on Science Direct


Zidong Lin et. al 2021

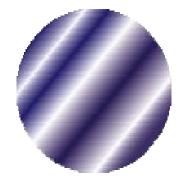
Wire vs Powder

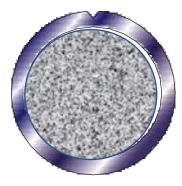
- ✓ Wire more economical choice
- ✓ Higher deposition rate with wire
- ✓ Larger parts can be manufactured
- ✓ Higher material utilization (100%) compared to powder (40-60%)
- More complex parts with higher resolution by powder
- ✓ Powders pose a higher safety risk: higher flammability potential
- \checkmark Inhalation concern using powder


Increased deposition rate & part size

A WAAM example

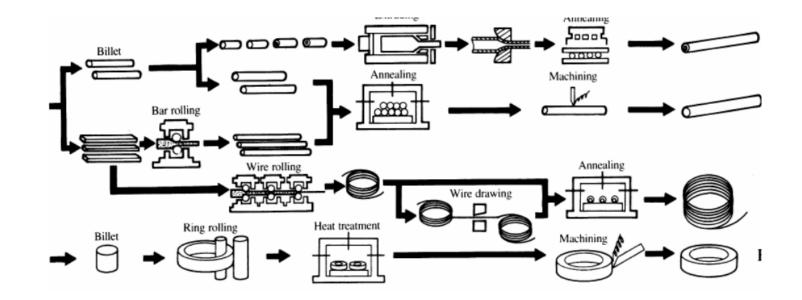
The hooks are approx. 170 by 130 cm in size, a weight of 1,700kg, loading capacity of 350mt, usage of 90 kilometers of welding wire MF731B


www.huismanequipment.com



Wire types

- ✓ **Solid wire:** not an option for all alloys
- ✓ Tubular wires: metal cored wire (MCW), flux cored wire (FCW)



Wire manufacturing

- ✓ Alloy dependable
- ✓ Cold rolling/forming
- ✓ Warm rolling/forming

Ti 6-4 Wire for AM

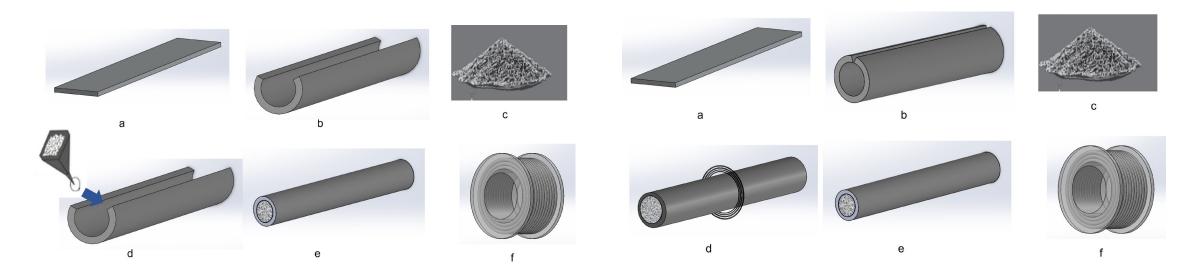
- Ti 6Al-4V: Do lots of cold draw / anneal
- Ti 6Al-4V: Warm rolling of Ti 6-4 wire controlled by acoustic emission monitoring (Hermith method)
- Ti 1Al-4V wire with Al cladding to give Ti 6Al-4V deposit
- Ti 1Al-4V wire with Al core to give Ti 6Al-4V deposit

Wire manufacturing of Ti alloy: warm rolling

- The wire is heated up during the drawing process
- The material is more ductile, which increases the rate of the deformation
- Do not need to anneal the wire between the stages
- Strict control of the temperature and speed control with acoustic emission

Wire manufacturing of Ti alloy: Comparison to cold drawing

	Cold deformation	Warm deformation
Degree of deformation per one stage	Low (10-15%)	High (35-45%)
The number of production stages	Large (≥45)	Reduced (≤8)
Heat treatments	After each stage	No
Energy consumption	High level	Mid-level
Time of production	Long (up to 70 days for 1 ton)	Short (less than 4 days for 1 ton)
Production costs	High	Low



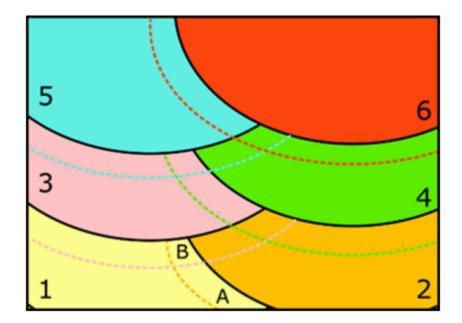
Tubular Wire manufacturing

Seamed tubular wire

Seamless tubular wire

Why use tubular wires in AM

- Higher flexibility in alloy design
- Better control of hydrogen > Seamless technology
- \circ $\,$ Higher deposition rate than solid wires $\,$
- When the solid wire is not an option/limited choice: Stellite alloy, tool steels
- Silicon islands reduction

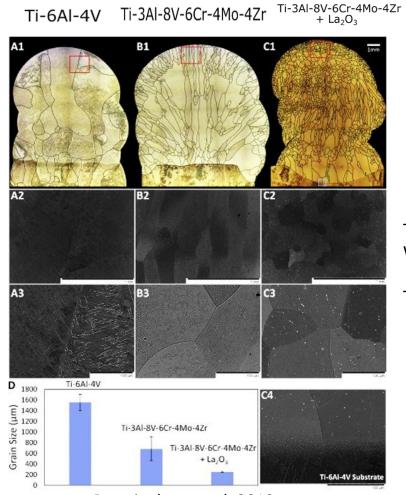


Design of wires for AM

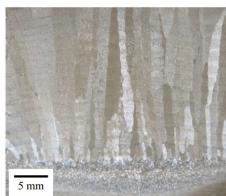
Use of fundamental knowledge generated by decades of research on welding

Microstructural control during welding

- \circ $\,$ Manipulation of the heat source: pulsation or oscillation
- Nucleation particles into the melt pool
- Welding parameters
- External electromagnetic and ultrasonic stimuli



Microstructure


Large columnar grain formation along the build direction

wires containing grain refining elements

Grain size reduction and promotion of columnar to equiaxed transition

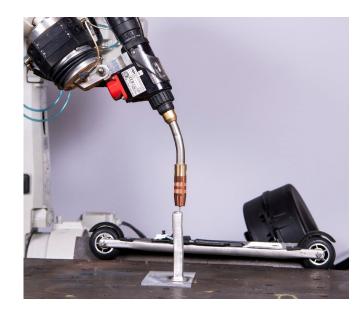
Bermingham et al. 2019

Texture in Ti6Al4V produced using WAAM

T. Debroy et al. 2018

Effect of different elements during fusion-based additive manufacturing

Alloy system	Element used	Effect
316L stainless steel	TiC	Grain refinement
Al-12Si (wt.%)	TiB ₂	Grain refinement
AA 2024	Zr	Columnar to equiaxed transition; change in the thermal conductivity
AA 5083	Ti	Grain refinement; Columnar to equiaxed transition
AA 6061	AlTi5Bi1 (wt.%)	Grain refinement
AA 6061	AlSc2 (wt.%)	Grain refinement
AA 7075	ZrH_2	Grain refinement; columnar to equiaxed transition
Inconel 625	SiC	Hardness increase
Inconel 625	TiC	Hardness increase
Inconel 625	Al_2O_3	Decreased structural integrity of the part
Inconel 625	TiB ₂	Grain refinement; increase of mechanical properties
Inconel 718	WC-W ₂ C	Grain refinement
Ті	Si	Grain refinement
Ti-6Al-4V	В	Grain refinement
Ti-6Al-4V	С	Grain refinement
Ti-6Al-4V	CaF_2	Increase the volume fraction of β phase
Ti-6Al-4V	Cr-Mo-Zr	Grain refinement; Columnar to equiaxed transition
Ti-6Al-4V	$Cr-Mo-Zr + La_2O_3$	Grain refinement; Columnar to equiaxed transition
Ti-6Al-4V	LaB ₆	Grain refinement
Ti20V	В	Grain refinement
Ti12Mo	В	Grain refinement

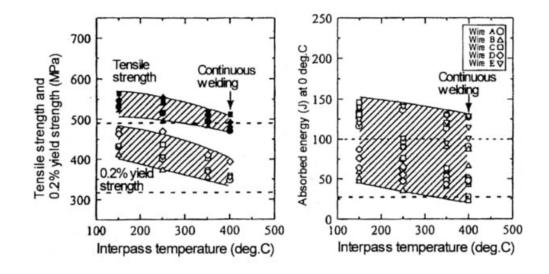


Application point of view

✓ Effect of dilution with the base metal

Wire composition similar to the target AM composition

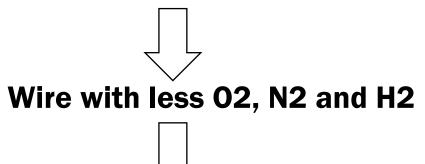
A WAAM sample made at University West



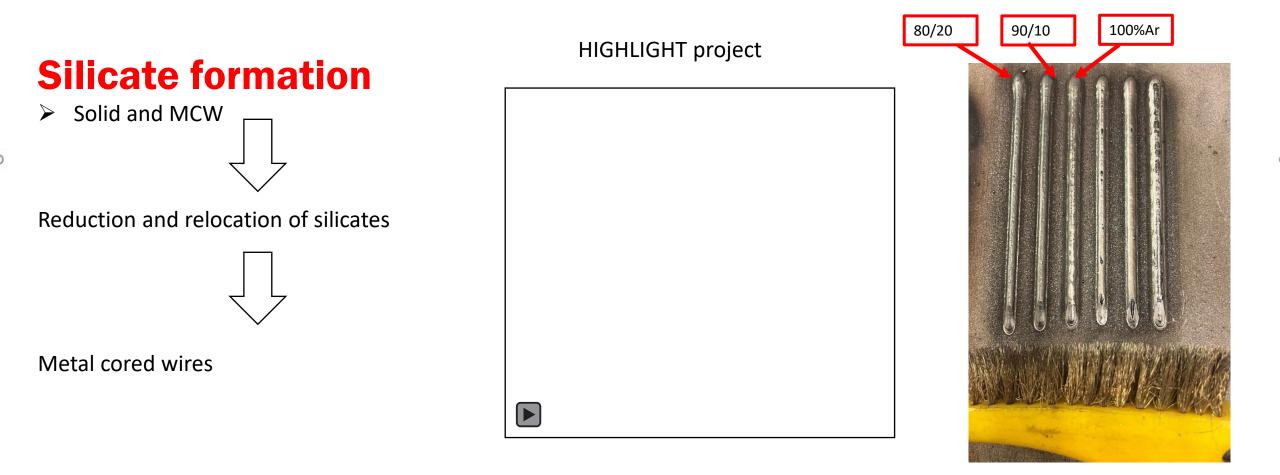
Inter-pass temperature

✓ Higher heat build-up in AM compared to welding

Modification of the wire composition



Porosity


 ✓ Absorption of nitrogen, oxygen, and hydrogen in the molten weld pool

Seamless tubular wires

Qualification of procedures, machines, and operators needed

AWS D20.1 Specification for fabrication of metal components using additive manufacturing

- Additive Manufacturing Procedure
 Specification (AMPS)
- Machine Qualification Record (MQR)
- Procedure Qualification Record (PQR)

Table 5.1 Inspection and Testing Requirements for Machine and Procedure Qualification								
Test Method		Powder Bed Fusion			Directed Energy Deposition			
		Class A	Class B	Class C	Class A	Class B	Class C	
Machine Qualification Standard Qualification Build(s)	Visual Examination	Yes	Yes	_	Yes	Yes	_	
	Dimensional Inspection	Yes	Yes	_	Yes	Yes		
	Radiographic Examination	Yes	Yes	_	Yes	Yes	_	
	Density Testing	Yes	Yes	_	Yes	Yes	_	
	Tension Tests	54	54	_	36	36	_	
	Metallographic Examination	Yes	Yes	_	Yes	Yes		
Procedure Qualification Preproduction Test Build(s)	Visual Examination	Yes	Yes	Yes	Yes	Yes	Yes	
	Dimensional Inspection	Yes	Yes	Yes	Yes	Yes	Yes	
	Penetrant Testing	Yes	Yes	_	Yes	Yes	_	
	Radiographic Examination	Yes	Yes	_	Yes	Yes	_	
	Density Testing	Yes	Yes	Yes	Yes	Yes	Yes	
	Tension Tests (Witness Specimens)	3	1	_	_	_	_	
	Tension Tests (Component)	3	3	_	3	3	_	
	Metallographic Examination	Yes	Yes	Yes	Yes	Yes	Yes	
	Chemical Analysis	Yes	Yes	_	Yes	Yes	_	

AWS D20.1 Specification for fabrication of metal components using additive manufacturing

- Wire feedstock procurement
- Wire storage
- AM machines
- Employment of Heating to prevent moisture accumulation
- Feedstock Change Plan:

"When the AM machine is used for more than one material type, the contractor shall establish a feedstock change plan that includes cleaning procedures adequate to remove contamination and a means of demonstrating that contamination does not exist from a previous build cycle of a different material type"

Content	AWS	ISO
Wire procurement and delivery condition	A5.01	14344
Wire sizes and packaging	A5.02	544
Specification for Ti alloy solid wires	A5.16	24034
Specification for Ni alloy solid wires	A5.14	18274
Type of inspection documents	-	10204
Specification for fabrication using AM	D20.1	-

Aerospace Industries Association (AIA) Recommended Guidance for Certification of AM Component

Wire feedstock material specification requirements should include, but may not be limited to <u>chemistry, melting practice, surface condition, including surface quality, size and tolerance,</u> <u>twist, fabrication method, lot definition, traceability requirements, packaging requirements, and</u> <u>wire-making process controls</u>

Summary

- Wires produced for welding are used in the AM industry, sometimes with minor modifications.
- As AM technology is rapidly developing, it would not be surprising that specific modifications are required, especially in certain alloy systems and applications.
- The experience and knowledge gained in the development and manufacturing of welding wires can appropriately be translated into the AM to develop specifically designed AM wires.
- Depending on the application and alloy system, chemical composition modification of welding wires and wires with higher purity levels may be required to produce AM parts with optimum properties.
- Procurement, testing, delivery condition, and storage of AM wires require extra caution.